Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukaemogenesis in BXH2 mice.
نویسندگان
چکیده
Haploinsufficiency of RUNX1/AML1 is associated with familial platelet disorder with a predisposition to acute myeloid leukaemia (FPD/AML), but the causal relationship remains to be addressed experimentally. Mice heterozygous for the Runx1 null mutation, Runx1+/-, are considered to be genetically comparable with human FPD/AML patients but do not develop spontaneous leukaemia. To induce additional genetic alterations, retroviral insertional mutagenesis was employed with the use of BXH2 mice, which develop myeloid leukaemia because of the random integration of retrovirus present in the mouse. Heterozygous disruption of Runx1 in BXH2 mice resulted in a shortening of the latency period of leukaemia. In addition, BXH2-Runx1+/- mice exhibited more marked myeloid features than control mice. Moreover, the c-Kit gene, mutated in human RUNX leukaemias, was recurrently activated in BXH2-Runx1+/- mice, and a colony-forming assay revealed synergism between the Runx1+/- status and c-KIT overexpression. In conclusion, the BXH2-Runx1+/- system is a promising mouse model to investigate the mechanism of leukaemogenesis in FPD/AML.
منابع مشابه
RUNX1 haploinsufficiency results in granulocyte colony-stimulating factor hypersensitivity
RUNX1/AML1 is among the most commonly mutated genes in human leukemia. Haploinsufficiency of RUNX1 causes familial platelet disorder with predisposition to myeloid malignancies (FPD/MM). However, the molecular mechanism of FPD/MM remains unknown. Here we show that murine Runx1(+/-) hematopoietic cells are hypersensitive to granulocyte colony-stimulating factor (G-CSF), leading to enhanced expan...
متن کاملThe AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells.
The acute myelogenous leukemia-1 (AML1)-ETO fusion protein is generated by the t(8;21), which is found in 40% of AMLs of the French-American-British M2 subtype. AML1-ETO interferes with the function of the AML1 (RUNX1, CBFA2) transcription factor in a dominant-negative fashion and represses transcription by binding its consensus DNA-binding site and via protein-protein interactions with other t...
متن کاملAML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms.
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by proliferation of one or more myeloid cell lineages. Some patients exhibit leukemic transformation (LT) by unknown mechanisms, and chemotherapy may increase the risk of LT. To clarify the molecular mechanisms of LT, gene alterations involved in LT from patients in the chronic phase (CP) of MPNs were...
متن کاملRunx1: no longer just for leukemia.
Some 20 years after original work positioned Runx1 as crucial for haematopoiesis and leukaemia formation (Miyoshi et al, 1991; Okuda et al, 1996), a study in this issue of the EMBO Journal (Scheitz et al, 2012) reveals that the RUNX1/Stat3 axis also promotes carcinogenesis in epithelial tissues. RUNX1, the DNA-binding subunit of heterodimeric transcription factor CBF, was first identified as a ...
متن کاملTumor and Stem Cell Biology Repression of Vascular Endothelial Growth Factor Expression by the Runt-Related Transcription Factor 1 in Acute Myeloid Leukemia
VEGFA is considered one of the most important regulators of tumor-associated angiogenesis in cancer. In acute myeloid leukemia (AML) VEGFA is an independent prognostic factor for reduced overall and relapse-free survival. Transcriptional activation of the VEGFA promoter, a core mechanism for VEGFA regulation, has not been fully elucidated. We found a significant (P < 0.0001) inverse correlation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- British journal of haematology
دوره 131 4 شماره
صفحات -
تاریخ انتشار 2005